
491

Mathematical Knowledge for  
Teaching in Planning  

and Evaluating Instruction:
What Can Preservice  

Teachers Learn?
Anne K. Morris and James Hiebert

University of Delaware

Sandy M. Spitzer
Towson University

The goal of this study is to uncover the successes and challenges that preservice 
teachers are likely to experience as they unpack lesson-level mathematical learning 
goals (i.e., identify the subconcepts and subskills that feed into target learning goals). 
Unpacking learning goals is a form of specialized mathematical knowledge for 
teaching, an essential starting point for studying and improving one’s teaching. Thirty 
K–8 preservice teachers completed 4 written tasks. Each task specified a learning 
goal and then asked the preservice teachers to complete a teaching activity with this 
goal in mind. For example, preservice teachers were asked to evaluate whether a 
student’s responses to a series of mathematics problems showed understanding of 
decimal number addition. The results indicate that preservice teachers can identify 
mathematical subconcepts of learning goals in supportive contexts but do not spon-
taneously apply a strategy of unpacking learning goals to plan for, or evaluate, 
teaching and learning. Implications for preservice education are discussed.

Key words: Content knowledge; Pedagogical knowledge; Preservice teacher educa-
tion; Teacher knowledge

Preparing teachers to teach mathematics effectively is one of the most urgent 
problems facing those who wish to improve students’ learning. What can preservice 
teachers learn during their preparation programs to increase the chances that they 
will become effective mathematics teachers? In this article, we explore the devel-
opment of specialized knowledge-for-teaching-mathematics, a kind of content 
knowledge that increasingly appears to be critical for effective teaching and that 
could be acquired during teacher preparation.

The study we report brings together two streams of work that address the knowl-
edge and skills needed by beginning mathematics teachers. A first stream focuses 
on the competencies needed to learn to teach effectively over time. Arguing that it 
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is unrealistic to expect graduates of teacher preparation programs to enter the 
classroom as expert teachers, Hiebert, Morris, Berk, and Jansen (2007) propose that 
preservice teachers should acquire knowledge, skills, and dispositions that would 
enable them to study their teaching and gradually improve over time. The authors 
identify skills needed to analyze teaching in a deliberate and systematic way. These 
skills can be learned by preservice teachers, because the skills can be taught in the 
usual teacher preparation settings of university courses with linked field experiences 
(Jansen & Spitzer, 2009; Spitzer, Phelps, Beyers, Johnson, & Sieminski, in press).

If the teaching being analyzed is mathematics teaching, as opposed to, say, 
history or English teaching, what kind of content knowledge is required to carry 
out useful analyses? The second stream of work contributing to this study is the 
development of “mathematical knowledge for teaching” (MKT) (Ball & Bass, 
2000; Ball, Thames, & Phelps, 2008). The concept of MKT provides the most 
promising current answer to the longstanding question of what kind of content 
knowledge is needed to teach mathematics well. Indeed, recent studies at the 
elementary school level provide initial data linking teachers’ MKT with the math-
ematical quality of instruction (Hill, et al., 2008) and the level of students’ achieve-
ment (Hill, Rowan, & Ball, 2005).

We believe that joining the analysis of teaching skills with aspects of MKT 
defines a portion of the competencies that preservice graduates can, and should, 
acquire. If this is true, then the development of these competencies creates a guide 
for a portion of the curriculum needed in teacher preparation programs. The devel-
opment of such a curriculum depends, of course, on understanding the successes 
and struggles faced by preservice teachers in acquiring these competencies. This 
study was designed to describe in detail the challenges that preservice teachers face 
in applying MKT to analyze teaching.

BACKGROUND

Skills for Analyzing Teaching

In the absence of empirical and theoretical support for traditional forms of 
teacher preparation, Hiebert and colleagues proposed an alternative aim: Rather 
than attempting to produce skilled teachers upon graduation, preservice education 
should prepare teachers to learn from teaching when they enter the profession 
(Hiebert, Morris, & Glass, 2003; Hiebert et al., 2007). This is not a new concept. 
It has been endorsed in various ways for at least several decades (e.g., Feiman-
Nemser, 1983; Hawkins, 1973; Schaefer, 1967). Theoretically, it draws from a 
variety of sources, including learning theory in which the goal for students is to 
learn to learn, that is, to become “intelligent novices” (Brown, Bransford, Ferrara, 
& Campione, 1983). In teacher preparation, preservice teachers are the students and 
they are learning to learn how to teach. In other words, the aim is for preservice 
teachers to acquire the skills needed to learn to teach in an intentional, systematic 
way.
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It is difficult to imagine learning to teach in a systematic way without being able 
to analyze the effects of teaching on students’ learning. In particular, the skills 
hypothesized to be essential include specifying learning goals for students, exam-
ining the alignment between instruction and achievement of these goals, and 
analyzing the evidence of students’ learning in order to evaluate and then revise 
instruction to make it more effective (Hiebert et al., 2003; Hiebert et al., 2007; 
Jansen, Bartell, & Berk, 2009). These skills allow teachers to treat their lessons as 
experiments, as episodes of teaching that can be assessed by measuring how well 
they helped students reach the learning goals and, in turn, how they can be revised 
to be more effective next time.

The beginning point for analyzing teaching, serving as a prerequisite for the 
entire activity, is the specification of learning goals (Jansen et al., 2009). Without 
clarity about the learning goals, it is difficult to judge whether teaching is effective. 
To be clear about learning goals means to identify the learnings required to achieve 
the goals. In other words, clarity about learning goals requires analyzing and 
unpacking learning goals into their constituent parts. Consider, for example, the 
learning goal of understanding the addition of decimal numbers. Unpacking this 
learning goal would reveal at least the following constituent parts or, as we will call 
them, subconcepts:

1.  A quantity is identified as “one.”
2. The value of each digit in a decimal number is determined by its place in the 

numeral. Each place is associated with a unit of measure, and the size of the 
units increase or decrease by a factor of 10 as you move to the left or right, 
respectively.

3. When adding decimals, same-sized units are joined, and the sum will be of that 
unit.

4. When a quantity contains 10 or more of a particular unit of measure, those 10 
can be exchanged for one unit of measure of the next larger size.

A deliberate recognition of these subconcepts would allow a teacher to analyze 
teaching in several critical ways: plan instructional activities that address these 
subconcepts, anticipate ideal student responses and anticipate ways that responses 
might fall short, construct assessment tasks that reveal students’ understanding of 
each subconcept, and evaluate students’ learning over the lesson(s) and look for 
evidence that students understood each of the subconcepts. Analysis of the subcon-
cepts is necessary for teachers to improve their practice because it allows them to 
pinpoint the areas in which their instruction is successful and areas in which 
improvements are needed.

An important feature of the analysis-of-teaching skills proposed by Hiebert and 
colleagues (Hiebert et al., 2003; Hiebert et al., 2007) is that they shift much of the 
intellectual work of teaching to activity outside the classroom—planning lessons, 
including specifying learning goals, aligning the instructional activities with the 
learning goals, and anticipating student responses that show achievement of the 
goals, and then evaluating lessons by examining evidence of students’ thinking and 

Anne K. Morris, James Hiebert, and Sandy M. Spitzer



494

learning. Although effective teaching likely requires both skillful inside-the-class-
room routines (Grossman & McDonald, 2008; Kazemi, Lampert, & Ghousseini, 
2007; Lampert & Graziani, 2009) and thoughtful outside-the-classroom planning 
and evaluation, we believe that improvements in teaching rest, in part, on systematic 
and intentional application of outside-the-classroom skills. As noted earlier, the 
preservice nature of preparation programs suits them to teaching outside-of-class-
room skills that can then be used when prospective teachers work in classrooms.

Mathematical Knowledge for Teaching

Building on the concept of pedagogical content knowledge (Shulman, 1986), 
Ball and colleagues (Ball et al., 2008; Hill, et al., 2008) describe four components 
of mathematical knowledge for teaching (MKT): knowledge of mathematics that 
most educated people acquire (“common content knowledge”); knowledge of 
mathematics that is unique to, and essential for, teaching mathematics (“specialized 
content knowledge”); knowledge that combines knowledge of content with knowl-
edge of students; and knowledge that combines knowledge of content with knowl-
edge of teaching. An example of the four components of knowledge at work can 
be fashioned from an ordinary school mathematics task: adding fractions with 
unlike denominators, say, 2/3 + 3/4. Common content knowledge is involved in 
adding the fractions correctly to get the correct answer; specialized content knowl-
edge is required to identify the subconcepts that must be understood to know why 
finding a common denominator is useful in calculating the answer, or to judge 
whether a nontraditional method a student might invent will always work; knowl-
edge of content and students is needed, among other things, to predict the most 
common misconceptions that students will have; and knowledge of content and 
teaching is needed to decide how to help students correct these misconceptions.

The second component—specialized content knowledge (SCK)—is of special 
interest for us. This kind of knowledge falls largely outside of Shulman’s (1986) 
pedagogical content knowledge because it does not draw directly on knowledge 
of students or teaching. It is content knowledge, but content knowledge of a 
particular kind. It is implicated in common teaching tasks such as choosing repre-
sentations of mathematical ideas that reveal key subconcepts of the ideas, evalu-
ating whether student responses show an understanding of key subconcepts, and 
justifying why arithmetic algorithms work. It involves unpacking or decom-
pressing mathematical knowledge in order to make particular aspects of it visible 
for students or to identify the source of students’ difficulties. At the core of many 
uses of SCK is the skill and knowledge required to unpack a mathematical concept 
or skill into its subconcepts.

Joining the Two Streams of Work

Specialized content knowledge (SCK) is of special interest here for several reasons. 
First, because it is content knowledge, not directly dependent on knowledge of 
students and teaching, it is a good candidate for preservice teacher education. Most 
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preservice teachers have limited opportunities to build their knowledge of school 
students and classroom teaching so it can be difficult for them to develop aspects of 
MKT that depend on this classroom-based knowledge until they begin teaching. 
Consequently, it seems possible, and wise, to focus part of preservice teachers’ atten-
tion on aspects of MKT that are well suited to preteaching experiences.

A second reason that SCK is of special interest is that it is tightly intertwined 
with the skill of specifying learning goals, a foundational skill for studying and 
improving teaching. In fact, SCK is precisely the kind of mathematical knowledge 
needed to become proficient with this skill. As illustrated previously for the 
learning goal of understanding the addition of decimal numbers, unpacking the 
goal into its subconcepts requires knowing the mathematics that fits together to 
yield this concept. Such knowledge lies at the heart of SCK (Ball et al., 2008; Hill 
et al., 2008). Knowing mathematics in this way enables, in turn, planning for 
teaching the concept by attending appropriately to the subconcepts as well as 
evaluating the effects of teaching on students’ acquisition of the learning goal by 
locating the source of incomplete understandings. Said another way, SCK is 
required to identify the subconcepts of learning goals, and identifying the subcon-
cepts of learning goals is essential for studying and improving one’s teaching.

The alignment of the competencies involved in specifying learning goals and 
displaying SCK creates a fertile area for exploring the competencies that could 
define a high-leverage goal for mathematics teacher preparation. If mathematics 
teacher educators wish to rethink the critical competencies needed for teaching and 
to consider which competencies might be productively addressed during teacher 
preparation, then we believe the intersection of the analysis of teaching skills and 
MKT described previously is a fruitful site to explore in some detail. In particular, 
the knowledge and skill required to unpack learning goals into their constituent 
parts provide a critical site because these competencies are essential for all further 
analyses of mathematics teaching and are potentially learnable during teacher 
preparation.

Our analysis leads to the following research question for this study: How do 
preservice teachers unpack learning goals into subconcepts to plan for, and eval-
uate, teaching and learning? The goal of the study is to uncover the successes and 
challenges that preservice teachers are likely to experience as they try to acquire 
such knowledge and skill.

METHOD

Participants

The participants were 30 sophomore and junior undergraduates in the University 
of Delaware’s (UD) K–8 teacher preparation program. The 4-year program for K–8 
certification includes general studies (science, mathematics, social science, fine 
arts, English), additional courses in a selected discipline, professional studies (e.g., 
human development, educational assessment), 2 semesters of content-specific 
courses on methods of teaching with field experiences in K–8 classrooms, and 
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student teaching. The participants’ general studies mathematics preparation consists 
of 3 semesters of mathematics content courses for K–8 preservice teachers, 
followed by a mathematics methods course. The first two content courses focus on 
number and operations, and the third on geometry and algebra.

Thirty of the 45 preservice teachers in the third content course who had agreed 
to participate in research studies were randomly selected and then invited to 
participate in our study. Preservice teachers who could not participate were replaced 
by additional random selections.1

The mathematics content courses completed by the participants focus on the 
mathematical content that is studied in grades K–8 and introduce preservice 
teachers to the specialized content knowledge they might need as teachers. For 
example, preservice teachers learn to explain mathematical ideas in ways that reveal 
the key subconcepts of the ideas, use representations of mathematical ideas that 
reveal key subconcepts, justify why arithmetic algorithms work, and decompose 
concepts into subconcepts in the context of evaluating K–8 students’ responses (e.g., 
based on a student’s reported response involving the subtraction of whole numbers, 
preservice teachers form hypotheses about which ideas about the subtraction of 
whole numbers the student did and did not understand). Although the content 
courses introduce preservice teachers to the SCK they might need in teaching and 
include tasks similar to the tasks used in this study, there is no systematic work in 
the courses on unpacking mathematical learning goals. Hence, we expected consid-
erable variation in performance.

Procedures

Preservice teachers independently completed four written tasks during two 
2-hour research sessions. The tasks were administered during the 3rd and 4th 
months of the semester to students enrolled in the third content course in the 
program. The mathematical content of the tasks involved fraction and decimal 
number concepts. These topics were chosen because the first two content courses 
are devoted to developing preservice teachers’ understanding of fraction and 
decimal number concepts and we wanted to maximize the probability that the 
participants would understand the mathematical content of the tasks.

1 UD mathematics education faculty and doctoral students frequently carry out research projects that 
investigate the knowledge, skills, and dispositions of the preservice teachers in the four mathemat-
ics teacher preparation courses. The studies are used to guide course improvements. To support this 
model of continuous improvement, participants are given a small number of points toward their course 
grade. At the beginning of each semester, preservice teachers are asked to indicate their willingness 
or unwillingness to participate in studies of this kind (on a human subjects consent form). Participants 
for a particular study are then randomly selected from the list of preservice teachers in the relevant 
course(s) who indicated a willingness to participate. Preservice teachers who opt out of participating 
can earn the same number of course points through other course activities. In general, very few of the 
preservice teachers indicate an unwillingness to participate. However, when preservice teachers are 
invited to participate in a given study, they sometimes have scheduling problems, work conflicts, and 
other obligations that prevent them from participating.
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Tasks

Anticipating an Ideal Student Response. The Anticipating an Ideal Student 
Response task is shown in Appendix A. Part 1 of the task specified a learning goal 
(“Students will understand how to add fractions and will understand the concepts 
underlying this operation.”) and specified four problems. Participants were asked 
to construct an ideal student response to each problem that would convince them 
that the student understood the learning goal. This task assessed whether preservice 
teachers would identify the subconcepts required to achieve the learning goal and 
use the identified subconcepts to construct responses that would provide evidence 
that the student understood each subconcept.

It is especially important to note that the preservice teachers were asked to 
construct an ideal student response for each problem:

Imagine that this is the only problem that Sue will solve for you; i.e., this is 
the only evidence that you will use to judge whether Sue understands the 
concepts underlying the addition of fractions. Use the exact wording that you 
want Sue to use while she solves the task.

This required that the preservice teachers construct an ideal response for   
each problem—a response that referred to, and showed understanding of, each 
subconcept.

Part 2 of the Anticipating an Ideal Student Response task asked the participants 
to identify one of the four problems as the problem with the most potential to reveal 
students’ understanding of the learning goal (“Which of the four problems will tell 
you the most about whether your students understand the concepts underlying the 
addition of fractions?”). This task assessed whether preservice teachers would 
identify the subconcepts required to achieve the learning goal and use the subcon-
cepts to identify the problem that would be most likely to reveal students’ under-
standing of each subconcept.

Evaluating a Student’s Incorrect Response. The Evaluating a Student’s Incorrect 
Response task is shown in Appendix B. The task involves reading a lesson transcript 
and evaluating a particular student’s response. The learning goal for the lesson is 
the following: “Students will understand how to compare fractions with different 
denominators and numerators, and the concepts underlying this type of compar-
ison.” Preservice teachers read the transcript and responded to the following 
prompt: “Nikki gave an incorrect answer. What doesn’t Nikki understand about the 
concepts underlying the comparison of fractions? List as many ideas as you can 
(up to five) that you think Nikki should understand, and doesn’t.” This task assessed 
whether preservice teachers would identify the subconcepts of the learning goal 
and use the subconcepts to assess whether Nikki’s response showed evidence that 
she understood or did not understand each of the subconcepts. An unpacked 
learning goal provides a standard, which helps to identify missing ideas, misconcep-
tions, or incomplete ideas in a student’s response.
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Evaluating a Student’s Correct Work. The Evaluating a Student’s Correct Work 
task is shown in Appendix C. Preservice teachers read Josie’s responses to several 
tasks and evaluated what Josie did and did not understand about a specified learning 
goal (“Students will understand how to add decimals and understand the concepts 
underlying this operation.”). Although Josie’s responses are correct, her responses 
could be given with little or no understanding of the learning goal. This task assessed 
whether preservice teachers would identify the subconcepts required to achieve the 
learning goal and use the subconcepts to assess whether Josie’s responses showed 
evidence that she understood or did not understand each of the subconcepts.

Analyzing a Classroom Lesson. The Analyzing a Classroom Lesson task is shown 
in Appendix D. Preservice teachers were asked to read the transcript of Mrs. 
Roland’s classroom lesson, which had the following learning goal: “Students will 
understand how to add fractions and will understand the concepts underlying this 
operation.” The transcript is divided into two segments. In Segment 1, Mrs. Roland 
explains the standard algorithm for adding fractions with like denominators. The 
students then solve problems that require adding two fractions with the same 
denominator. The students give correct answers but, given that they know the algo-
rithm, their answers require little or no mastery of the learning goal. In Segment 2, 
Mrs. Roland asks the students to figure out how to add two fractions with unlike 
denominators. Students appear to productively struggle with the concepts of the 
learning goal, but do not find the correct sum.

After reading the transcript, preservice teachers evaluated the effectiveness of 
the lesson, revised one of the two segments, and provided a justification for the 
revision. This task assessed whether preservice teachers would identify the subcon-
cepts of the learning goal and use the identified subconcepts to (a) evaluate 
students’ understanding of each subconcept over the lesson and the effects of the 
instruction on those understandings (Part 1 of the task), and (b) revise instruction 
to better help students achieve the learning goal (Parts 2 and 3 of the task). 

In Analyzing a Classroom Lesson, the task of identifying the subconcepts of the 
learning goal was deeply embedded in a teaching scenario. Consequently, we 
hypothesized that preservice teachers’ performance would be influenced by other 
types of MKT (e.g., knowledge of content and students, knowledge of content and 
teaching) (Ball et al., 2008; Hill et al., 2008) as well as their beliefs about peda-
gogical practices. The transcript was written to highlight two principles of learning 
and teaching that have been shown to support students’ achievement of learning 
goals that involve understanding mathematics: Instruction should, at some point 
and in some way, make the key mathematical relationships clear for the students; 
and instruction should, at some point and in some way, allow students to wrestle 
with the key mathematical ideas (Hiebert & Grouws, 2007). We were interested in 
whether, and in what way, preservice teachers would apply their SCK to unpack 
learning goals and then use this analysis to examine teaching and learning in the 
context of these two principles. Segment 1 violated both principles, and Segment 
2 illustrated the second principle. Prior pilot studies indicated that the lesson tran-
script created a realistic classroom scenario for preservice teachers that tested their 
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inclination to analyze the mathematics involved (identify the mathematical subcon-
cepts and use this to evaluate the teaching) in the face of other aspects competing 
for attention (e.g., students’ correct responses and/or their confusion).

Coding and Reliability

The data were coded by the authors. To calculate reliability, two coders coded a 
subset of the participants’ responses (4 to 10 of the responses) and calculated reli-
ability as number of agreements divided by number of codes applied.

Anticipating an Ideal Student Response Task. We unpacked the learning goal of 
the task (“Students will understand how to add fractions and will understand the 
concepts underlying this operation”) into six subconcepts that, we believe, are 
necessary to achieve the learning goal.

1. A quantity is identified as the quantity “one.”
2. We obtain units of size 1/n by partitioning the “one” into n equal parts.
3. The numerator is the number of units of size 1/n.
4. The addends must both be expressed in terms of the same-sized unit.
5. The addends must be joined.
6. The sum must be expressed in terms of a unit of size 1/n.

For Part 1 of the task, we determined whether preservice teachers referred to 
these subconcepts when they constructed ideal student responses. It should be noted 
that other decompositions of the learning goal are possible. We regarded our list of 
subconcepts as one possible list. Because the goal of the study was to assess whether 
preservice teachers unpacked learning goals into any reasonable subconcepts, our 
intent was to add to the list if preservice teachers identified subconcepts that we 
had not identified. However, this did not occur for the list used in this task (or for 
any of the subconcept lists used in this study).

For each problem (Problems 1, 2, 3, and 4 of the task in Appendix A), preservice 
teachers were assigned a score of 0, 1, or 2 for each subconcept in the list. A score 
of 0 indicated that the participant did not mention the subconcept at all; 1 indicated 
the participant referenced or used the subconcept but in a way that could hide a 
lack of understanding (e.g., the participant verbally named the concept only, the 
participant used the concept to draw a correct picture but did not explain how or 
why she was drawing it that way, or the participant provided an incomplete or vague 
explanation); and a score of 2 indicated that the participant explicitly referenced or 
used the subconcept in a way that indicated a genuine understanding. To clarify the 
difference between scores of 1 and 2 on this task, we provide in Table 1 examples 
of responses to Problems 2 and 3 that would receive each score.

Interrater agreement for Problems 1, 2, 3, and 4, respectively, was 88%, 83%, 
96%, and 96%. For each problem, each preservice teacher was also assigned a total 
score for reference to the subconcepts. Because there are six subconcepts, total 
scores for each problem could range from 0 to 12.
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Table 1
Examples of Responses to Part 1 of the Anticipating an Ideal Student Response Task That 
Would Be Given Scores of 1 and 2 for Each of the Six Subconcepts

Problem 2: 
Solve 1/4 + 3/8 by drawing 
a diagram on graph paper.

1.  A quantity is identified 
as the quantity “one.”

2.  We obtain units of size 
1/n by partitioning the 
“one” into n equal parts.

3.  The numerator is the 
number of units of size 
1/n.

4.  The addends must both 
be expressed in terms of 
the same-sized unit.

5.  The addends must be 
joined.

6.  The sum must be 
expressed in terms of a 
unit of size 1/n.

Score of 1

Sue should explain the 
concept of “one.”

First I colored in two out of 
eight squares to show 1/4, 
and then I colored in three 
out of eight squares to show 
3/8.

First I colored in two out of 
eight squares to show 1/4, 
and then I colored in three 
out of eight squares to show 
3/8.

I can see from the picture 
that 1/4 = 2/8.

I counted up all the colored 
squares, and there were 
five.

Since five of eight squares 
are shaded, the sum is 5/8.

Score of 2

I picked eight squares (or 
16, 24, etc.) to be “one.”

Then a unit of size 1/4 will 
be two squares, because I 
have to divide the “one” 
into four equal parts to 
obtain a unit of size 1/4. A 
unit of size 1/8 will be one 
square, because I have to 
divide the one into eight 
equal parts.

So 1/4 will be two squares 
(or one unit of size 1/4) and 
3/8 will be three squares (or 
three units of size 1/8).

Now I need to measure 
both addends with the 
same-sized unit. Since 1/4 
is two squares, I can see 
that two units of size 1/8 
will fit into 1/4. So 1/4 is 
the same quantity as 2/8. 
This is true because one 
eighth is two times as small 
as one fourth. Therefore 
two times as many eighths 
fit into this quantity.

Now I can combine the two 
addends. I know that I have 
two units of size 1/8 (two 
squares) and three more 
units of size 1/8 (three 
more squares). So, my sum 
will look like five squares.

I can see that a unit of size 
1/8 (that is, one square) 
will fit into the sum five 
times, so the answer is 5/8.
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Problem 3: 
Solve 1/4 + 3/8 using the 

common denominator 
method.

1.  A quantity is identified 
as the quantity “one.”

2.  We obtain units of size 
1/n by partitioning the 
“one” into n equal parts.

3.  The numerator is the 
number of units of size 
1/n.

4.  The addends must both 
be expressed in terms of 
the same-sized unit.

5.  The addends must be 
joined.

6.  The sum must be 
expressed in terms of a 
unit of size 1/n.

Score of 1

Sue would have to explain 
the concept of a “one.”

For 1/4 + 3/8, the denomi-
nators tell you the number 
of pieces.

The numerators tell you 
how many pieces.

Next, you do 1/4 + 3/8 = 
2/8 + 3/8. You need to have 
the same-sized pieces or 
the same denominators to 
add fractions. The fractions 
1/4 and 2/8 are the same 
size.

Now all I need to do is add 
the numerators or number 
of pieces.

So now I have five of eight 
pieces, so the answer is 5/8. 

Score of 2

When I add 1/4 + 3/8, some 
quantity had to be “one,” 
and the same “one” was 
used for both fractions. 

We obtained 1/4 by parti-
tioning the one into four 
equal parts and 1/8 by 
partitioning the one into 
eight equal parts.

1/4 means I have one unit 
of size 1/4, and 3/8 means I 
have three units of size 1/8.

1/4 + 3/8 = 2/8 + 3/8. In 
this step, I converted 1/4 
into an equivalent fraction. 
I needed to measure both 
addends with the same-
sized unit. Since a unit of 
size 1/8 is half as big as a 
unit of size 1/4, two times 
as many units of size 1/8 
will fit into a quantity. 
Since two units of size 1/8 
fit into one unit of size 1/4, 
the two quantities 1/4 and 
2/8 are the same size.

We need to combine the 
two quantities. Since both 
2/8 and 3/8 are measured 
with the same-sized units, 
we can add the number of 
units to find the sum of the 
two fractions.

I have a total of five units, 
each of size 1/8, so the sum 
is equal to 5/8.

Anne K. Morris, James Hiebert, and Sandy M. Spitzer

For Part 2 of the task, we determined whether preservice teachers referred to the 
subconcepts when they explained why they picked a particular problem as having 
the most potential to reveal students’ understanding of the learning goal. A score 
of 0 indicated they did not refer to the subconcept and 1 indicated they did. 
Interrater agreement was 98%.
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Evaluating a Student’s Incorrect Response Task. We decomposed the learning 
goal of the lesson (“Students will understand how to compare fractions with 
different denominators and numerators, and the concepts underlying this type of 
comparison.”) into four component subconcepts that, we believe, are necessary to 
achieve the learning goal. The four subconcepts are shown in the rightmost column 
of Table 2. Next, we determined whether preservice teachers referred to the subcon-
cepts when they analyzed Nikki’s response. For each subconcept, preservice 
teachers were assigned a score of 0, 1, or 2. The meaning of the scores is the same 
as those described for the Anticipating an Ideal Student Response task. Interrater 
agreement was 100%. Each preservice teacher was assigned a total score for the 
Evaluating a Student’s Incorrect Response task; because there are four subconcepts, 
total scores could range from 0 to 8.

Evaluating a Student’s Correct Work Task. We identified the subconcepts that, 
we believe, are involved in achieving the learning goal (“Students will understand 
how to add decimals and understand the concepts underlying this operation”). The 
four subconcepts are shown in Table 2.

Preservice teachers responded to the prompt, “What ideas do you think Josie 
does not understand about the concepts underlying the addition of decimals?” For 
each subconcept, preservice teachers were given a score of 0 if they did not mention 
the subconcept at all in their analysis of what Josie did not know; 1 if they refer-
enced the subconcept but only in the specific context of Josie’s work; and 2 if they 
explicitly explained the subconcept in a way that expressed the generalized form 
of the subconcept and went beyond the particular context of Josie’s work. To clarify 
the difference between scores of 1 and 2 on this task, we provide examples of 
responses that would receive each score for subconcept 4.

Score of 1:   The only thing I would say Josie doesn’t understand involves problem 1. She 
decides that she’s going to count all of the little blocks, which is fine, but I 
think it’s important that she knows that 10 of those little blocks equals .1 so 
she could have made it easier to find the answer if she counted that she has 10 
little blocks which equals .1 and 3 left over which equals .03. So now all she 
needs to do is count the number of .1’s she has (4) and the 3 little blocks left 
over [which is] .43.

Score of 2:  I do not see any evidence that Josie understands that when a quantity contains 
ten or more of a particular unit, we can exchange ten of the units for one unit of 
the next larger size. On all three problems, Josie always counts up how many 
.01’s there are. If there are 45 .01’s, for example, Josie knows the answer is .45. 
This does not show that Josie recognizes the idea of a ten-for-one exchange. A 
student who understood this idea should be able to exchange 10 hundredths for 
1 tenth and explain that this is allowed because a tenth is ten times as big as a 
hundredth. If Josie showed the ability to exchange 10 units for 1 unit for several 
different place values and several types of tasks (e.g., exchanging in the subtrac-
tion algorithm) and could explain the ideas behind this exchange, then I would 
have evidence that Josie understands the idea of a ten-for-one exchange.
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Subconcepts

1.  A quantity is identified as the quantity “one.” 
2.  We obtain units of size 1/n by partitioning the 

“one” into n equal parts.
3.  The numerator is the number of units of size 

1/n.
4.  The addends must both be expressed in terms 

of the same-sized unit.
5. The addends must be joined.
6.  The sum must be expressed in terms of a unit 

of size 1/n.

1.  A quantity is identified as the quantity “one.” 
2.  We obtain units of size 1/n by partitioning the 

“one” into n equal parts. As n gets larger, 1/n 
gets smaller. 

3.  The numerator is the number of units of size 
1/n.

4.  A quantity can be represented by different, 
equivalent fractions. For example, if the same 
“one” is used, a quantity that can be repre-
sented by the symbol 4/5 can also be repre-
sented by the symbol 8/10. Because the unit of 
size 1/10 is one half as large as the unit of size 
1/5, two times as many units of size 1/10 will 
fit into the quantity (i.e., 8 units of size 1/10 
will fit in, versus 4 units of size 1/5).

1.  A quantity is identified as the quantity “one.”
2.  The value of each digit in a decimal number is 

determined by its place in the numeral. Each 
place is associated with a unit of measure, and 
the size of the units increase or decrease by a 
factor of 10 as you move to the left or right, 
respectively.

3.  When adding decimals, same-sized units are 
joined, and the sum will be of that unit. In 
particular, it is most efficient if each unit of 
measure is added separately.

4.  When a quantity contains ten or more of a 
particular unit of measure, those ten can be 
exchanged for one unit of measure of the next 
larger size.

(Same as for Anticipating an Ideal Student 
Response)

Task

Anticipating 
an Ideal 
Student 
Response

Evaluating a 
Student’s 
Incorrect 
Response

Evaluating a 
Student’s 
Correct 
Work

Analyzing a 
Classroom 
Lesson

Learning goal

Students will 
understand how to 
add fractions and 
will understand the 
concepts under-
lying this opera-
tion.

Students will 
understand how to 
compare fractions 
with different 
denominators and 
numerators, and the 
concepts under-
lying this type of 
comparison.

Students will 
understand how to 
add decimals and 
understand the 
concepts under-
lying this opera-
tion.

(Same as for 
Anticipating an 
Ideal Student 
Response)

Table 2
The Four Tasks, Their Learning Goals, and the Subconcepts for Each Learning Goal
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Interrater agreement was 90%. Each preservice teacher was assigned a total 
score; because there are four subconcepts, total scores could range from 0 to 8.

Preservice teachers also responded to the prompt, “What ideas do you think Josie 
does understand about the concepts underlying the addition of decimals? List as 
many ideas as you can (up to four) that you think Josie does understand.” We first 
identified categories or types of responses by reading through all of the participants’ 
responses. We then determined how many participants gave each type of response. 
Interrater agreement was 94%.

Analyzing a Classroom Lesson Task. Because the learning goal of Mrs. Roland’s 
lesson is identical to the learning goal for the Anticipating an Ideal Student Response 
task, the same six subconcepts listed for the Anticipating an Ideal Student Response 
task were used to analyze responses to the Analyzing a Classroom Lesson task. 
Preservice teachers were assigned a score of 0, 1, or 2 for each subconcept. The 
meaning of the scores is the same as those described for the Anticipating an Ideal 
Student Response task. Part 1 was coded separately; Parts 2 and 3 were coded 
together because they are interrelated. Agreement between coders was 95%.

Rationale for the coding. The tasks were designed to assess whether preservice 
teachers applied a strategy of unpacking learning goals to plan for, and evaluate, 
teaching and learning. The four tasks require preservice teachers to recognize the 
value of conducting a mathematical analysis of teaching and learning situations. 
That is, the tasks test preservice teachers’ inclination to analyze the mathematics 
involved in the situation (identify the mathematical subconcepts and use them to 
evaluate and plan for teaching and learning). We took both the number of subcon-
cepts mentioned and the explicitness with which they were mentioned as evidence 
of the extent to which preservice teachers attended to the mathematics in these 
teaching and learning situations. We interpreted higher scores to mean greater 
attention to the mathematical subconcepts of the learning goal and, in turn, a more 
active application of SCK to the analysis of teaching and learning.

Order of the tasks. The tasks were administered in a fixed order. In the first 
research session, participants completed the Evaluating a Student’s Incorrect 
Response task and then completed the Analyzing a Classroom Lesson task. In the 
second session, participants first completed the Anticipating an Ideal Student 
Response task, followed by the Evaluating a Student’s Correct Work task.

This order was selected for two reasons. First, this combination allowed both 
research sessions to be scheduled for approximately the same amount of time. 
Second, the Analyzing a Classroom Lesson task and the Anticipating an Ideal 
Student Response task had the same learning goal, and we believed the latter task 
might affect preservice teachers’ performance on the former task. Creating four 
ideal student responses to show understanding of the learning goal might affect 
how preservice teachers would analyze the effects of a lesson with that learning 
goal. Therefore, the Analyzing a Classroom Lesson task was given first, and the 
two tasks were given during different research sessions.

MKT in Planning and Evaluating Instruction



505

RESULTS

Anticipating an Ideal Student Response

Part 1 of the Anticipating an Ideal Student Response task specified a learning 
goal and four problems and asked the participants to construct four ideal student 
responses (one response for each problem) that would convince them the student 
understood the learning goal. Recall that the instructions for each of the four prob-
lems in the task were, “Imagine that this is the only problem that Sue will solve for 
you; i.e., this is the only evidence that you will use to judge whether Sue under-
stands the concepts underlying the addition of fractions. Use the exact wording that 
you want Sue to use while she solves the task.” As shown in Appendix A, each of 
the four problems used a different representation: Problems 1, 2, 3, and 4 used 
fraction pieces, graph paper, the common denominator algorithm, and pennies, 
respectively.

Note that there is a difference between solving 1/4 + 3/8 = ? using the given 
representations and constructing an ideal student response that shows a student 
understands each of the subconcepts when the student is using each of the repre-
sentations. For some of these representations, the task of the “solver” and the task 
of the “constructor of an ideal student response” are more similar. In the graph 
paper problem, for example, the solver has to explicitly think about or use many of 
the subconcepts during the solution process: He or she has to identify a quantity to 
represent “one,” create fractional units, and find the answer using his or her 
constructed units. The solution itself requires thinking about the subconcepts (if 
one is able to do so). In Problem 3 (the common denominator method), the solution 
can be carried out with no reference to, or understanding of, any of the subconcepts. 
The solver can think, “1/4 + 3/8 = 2/8 + 3/8 = 5/8.” This means it is less likely that 
the solver will generate an ideal student response for this problem as compared to 
the graph paper problem (see Table 1). In the case of fraction pieces, the solver does 
not have to attend to, or even understand, the concept of one in order to solve the 
problem. With the fraction pieces, the solver can think, “This piece is 1/4. This 
piece is 1/8. If I join 1/4 and 3/8, I see (by just looking at the physical size of the 
materials) that five of the 1/8 pieces fit into the sum. So, the answer is 5/8.”

Similar statements can be made about other subconcepts and problems. For 
example, fraction pieces may encourage the solver to apply subconcept 4 (the 
addends must both be expressed in terms of the same-sized unit). Fraction pieces 
provide support for the application of this idea because it is relatively easy to find 
a common unit that fits into both addends by laying fraction pieces on top of each 
other and comparing their relative sizes. Solving the pennies problem does not make 
this subconcept visible because it is easier to join the addends without finding a 
common unit and then to apply subconcept 6 (the sum must be expressed in terms 
of a unit of size 1/n).

Because it is unnecessary to think about each subconcept in order to solve 
1/4 + 3/8 = ? with particular representations, constructing four ideal student 
responses requires (a) identifying the subconcepts by unpacking the learning goal, 
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and then (b) making sure that the student refers to each of the subconcepts in each 
of the four ideal student responses. Thus the construction of four ideal student 
responses requires a deliberate unpacking of the learning goal.

We needed to interpret preservice teachers’ responses on the Anticipating an Ideal 
Student Response task carefully because, on some of the four problems in this task, 
just solving the problem would likely yield an identification of some subconcepts 
(e.g., subconcept 1 for the graph paper problem), whereas solving other problems 
would likely keep the subconcepts hidden (subconcept 1 for the algorithm problem). 
Consequently the best measure of unpacking learning goals to identify subconcepts 
on this task was preservice teachers’ relative performance across the four problems. 
Preservice teachers who scored higher on supportive tasks (tasks that required the 
use of a subconcept just to solve the problem) and lower on nonsupportive tasks 
were unlikely to be deliberately unpacking the learning goal. For problems that 
require thinking about a given subconcept just to solve the problem, it is possible 
that a preservice teacher could construct a student response that refers to the 
subconcept without explicitly unpacking the learning goal. But for problems that 
do not require thinking about a given subconcept during the solution process, it is 
unlikely that a preservice teacher would construct a student response that refers to 
the subconcept unless the preservice teacher had consciously identified the subcon-
cepts involved in achieving the learning goal.

The results from Part 1 of the Anticipating an Ideal Student Response task 
support two conclusions.

1. The majority of preservice teachers understood, or at least used or referred to, the 
relevant mathematical subconcepts for at least one problem, and therefore appeared 
to have the ability to identify individual subconcepts of the learning goal.

2. Despite the fact that the individual subconcepts were accessible to them, preser-
vice teachers did not, in general, apply a strategy that involves unpacking the 
learning goal to identify subconcepts and using the subconcepts to construct ideal 
student responses (i.e., responses that provide evidence that students understand 
the component ideas of the learning goal).

Evidence for the first claim can be found in Table 3. The first data column of  
Table 3 shows the percentages of preservice teachers who received a score of 2 for 
each subconcept on at least one of the four problems. As Table 3 shows, for five of 
the six subconcepts, approximately 50% or more of the preservice teachers explic-
itly referred to, or used, the subconcept in a way that indicated they understood the 
subconcept. The second data column of Table 3 shows that, for each of the six 
subconcepts, the percentage of preservice teachers who received a score of 1 or 2 
was 83% or greater. These results support the claim that the majority of preservice 
teachers understood, or at least used or referred to, the relevant mathematical 
subconcepts, and therefore showed an ability to identify the individual subconcepts 
of the learning goal.

MKT in Planning and Evaluating Instruction



507

Table 3
Percent of Preservice Teachers Receiving a Score of 1 or 2 for Each of the Six 
Subconcepts on at Least One Problem in Part 1 of the Anticipating an Ideal Student 
Response Task 

Subconcept

Percent who 
received  

at least one “2”

Percent who 
received at 

least one “1” or 
one “2”

1.  A quantity is identified as the quantity 
“one.” 83 83

2.  We obtain units of size 1/n by partitioning 
the “one” into n equal parts. 63 100

3.  The numerator is the number of units of size 
1/n. 47 100

4.  The addends must both be expressed in 
terms of the same-sized unit. 10 90

5. The addends must be joined. 60 100

6.  The sum must be expressed in terms of a 
unit of size 1/n. 50 100

Another analysis provides information on individual preservice teachers’ under-
standing of all six subconcepts. For each preservice teacher, we identified the 
highest score he or she received for each subconcept across the four problems. For 
example, if a preservice teacher received scores of 0, 2, 1, and 2 for Subconcept 1 
on the fraction pieces, graph paper, algorithm, and pennies problems, respectively, 
then the highest score for the preservice teacher for subconcept 1 was a 2. We then 
totaled the preservice teachers’ highest scores for each of the six subconcepts to 
obtain the total highest score. Total highest scores for each preservice teacher could 
range from 0 to 12. Because this score shows whether preservice teachers used the 
subconcepts, with understanding, on any of the problems, it is a good indicator of 
whether the preservice teachers could access the six subconcepts and apply them 
in a meaningful way. The average total highest score was 8.87 (SD = 1.93). We 
interpret this average to show that the preservice teachers could identify, with 
understanding, many of the mathematical subconcepts.

The results also suggest, however, that despite possessing the relevant knowledge, 
the preservice teachers did not spontaneously unpack the learning goal in order to 
apply this knowledge to construct ideal student responses to each problem. As 
previously described, each preservice teacher was given a score of 0, 1, or 2 for 
each subconcept for each problem. These scores were then totaled to obtain a total 
score for each preservice teacher for each problem. If preservice teachers explicitly 
analyzed the learning goal, we would expect mean total scores for each problem to 
be similar across problems; an explicit analysis of the learning goal would allow 
one to construct a response for each problem that referred to each subconcept. 
Instead the means were significantly different (F(3, 116) = 46.57, p < .0001). Post 
hoc analyses using a Tukey HSD test showed the average total score for the  
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algorithm problem (M = 0.73, SD = 1.01) was significantly lower than the average 
total scores for the fraction pieces problem (M = 5.27, SD = 2.26), graph paper 
problem (M = 6.53, SD = 2.33), and pennies problem (M = 6.13, SD = 2.62), with 
p < .01 for each of the three pairwise comparisons. The representation that does 
not require thinking about the subconcepts in order to solve the problem—namely, 
the algorithm—yielded a significantly lower total score than the other representa-
tions.

Moreover, the average total highest score of 8.87 (defined previously) was 
significantly higher than the average total scores for each problem (F(4, 145) = 
60.26, p < .0001; p < .01 for each pairwise comparison of the mean total highest 
score versus the mean total score for each problem). This result suggests preservice 
teachers did not apply available knowledge of the individual subconcepts to 
construct ideal student responses for each problem. In summary, the data in Table 
3, the total highest scores, and the total scores for each problem suggest preservice 
teachers could refer to each subconcept but did not spontaneously unpack the 
learning goal and use the identified subconcepts to determine what a student would 
have to say and do in each context to demonstrate mastery of the learning goal.

Additional evidence for the two conclusions described previously is provided by 
comparing scores for each subconcept across problems. For example, 50% and 63% 
of the preservice teachers received a score of 2 for Subconcept 1 (a quantity is 
identified as the quantity “one”) on the graph paper and pennies problems respec-
tively, problems that require attending to the “one” during the solution of the 
problem. But on problems that did not require explicit attention to this idea in order 
to solve it, preservice teachers received lower scores: only 17% received a score of 
2 for Subconcept 1 on the fraction pieces problem, and no preservice teacher 
received a score of 2 on Subconcept 1 for the algorithm problem. For Subconcept 
2 (we obtain units of size 1/n by partitioning the “one” into n equal parts), the 
percentages who received a score of 2 ranged from 0% for the algorithm problem, 
in which deliberate attention to the subconcept is unnecessary in order to solve the 
problem, to 50% for the pennies problem in which the solver must partition the one 
to make fractional units.

The differences in responses across the problems suggest preservice teachers can 
identify a subconcept when a context is supportive. By supportive we mean a 
context that draws their attention to the subconcept, which reveals the subconcept 
or makes it visible while examining the problem. But preservice teachers do not 
spontaneously initiate a strategy that identifies all of the subconcepts and uses the 
unpacked ideas to construct student responses that would provide evidence of 
conceptual understanding.

Part 2 of the Anticipating an Ideal Student Response task asked preservice 
teachers to think about what a problem requires from students and to relate that to 
an analysis of the learning goal. The four problems were designed to be more or 
less likely to reveal students’ understanding of the learning goal. We believed the 
graph paper problem (Problem 2) and pennies problem (Problem 4) would be most 
revealing: Students must construct a “one,” create fractional units, show they 
understand the meaning of the numerator and denominator, physically join the 
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quantities, and find the answer using their constructed units. Fraction pieces 
(Problem 1) do more of the work for students, and students do not have to attend 
explicitly to the concept of one or create their own units. The algorithm (Problem 
3) can be carried out with no understanding of the learning goal. Forty-three percent 
of the preservice teachers selected the pennies problem as the problem that would 
tell them the most about whether students understood the concepts underlying the 
addition of fractions, 23% chose the graph paper problem, 20% chose the common 
denominator algorithm problem, and 13% chose the fraction pieces problem.

We coded whether preservice teachers referred to the subconcepts when they 
explained why they picked a particular problem as having the most potential to 
reveal students’ understanding of the learning goal. A score of 0 indicated they did 
not refer to the subconcept and 1 indicated they did. The average score was 1.57 
out of a possible 6 (SD = 1.25). Twenty-three percent of the preservice teachers 
referred to no subconcepts, but 77% referred to one or more subconcepts to justify 
their choice. The following responses are representative.

The fraction strips [pieces] are the clearest means of determining whether or not the 
learning goal was achieved. Sue is able to match up 1/4 to 2/8 to determine they are 
equivalent fractions. Then she can add the 2/8 and 3/8 and it is clearly represented as 
5/8 in the fraction strips [pieces]. It shows she understands the relationship between 
1/4 and 2/8 and why she needs to use common denominators to add fractions.

I chose problem 2 [graph paper] because it forces students to tell you all they know 
about adding fractions. It told me that they know that 1 has to be partitioned/cut up to 
find the size of the fraction. Then it requires them to draw out the representation of 
each fraction, put them together, and figure out the correct measuring unit needed to 
find the final answer. I think this will tell me the most about the students’ under-
standing because they have to show and explain all the steps. Students can get away 
with not knowing how to add fractions with the common denominator method, but not 
this one.

I chose problem 3 [algorithm] because it actually has the children thinking about 
making common denominators whereas the other problems involving pictures they 
do not have to make common denominators they just have to be able to correctly relate 
their graphical representation of the answer to their [one]. And having common 
denominators is an important concept to know when adding fractions.

I chose problem 4 [pennies] because I feel that students will need to use many concepts 
and ideas to solve this problem. In order to solve this problem, students need to know 
how to make a [one] and from there, divide the [one] into 1/8[ths] and 1/4[ths]. 
Students will also have to understand that when you are adding two fractions, they 
need to have a common denominator. Some students might have difficulty converting 
1/4 into 1/8ths. This problem, I feel incorporates the ideas of all the other three prob-
lems, which is why I believe problem 4 will tell teachers the most about students’ 
understanding. 

Table 4 supports the conclusion that the features of the problem influenced 
whether and how preservice teachers unpacked the learning goal and used the 
analysis to evaluate a representation’s capacity for revealing student understanding. 
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Table 4 shows that all the preservice teachers who selected the fraction pieces 
problem as the most revealing problem referred to the subconcept that addends 
should be expressed in terms of the same-sized units. Fraction pieces do appear to 
encourage a solution that involves using the same-sized units for both addends, 
whereas graph paper solutions, for example, do not. (In a graph paper solution, it is 
easier to first join the addends, and then to express the resulting quantity in terms 
of a single unit.) Forty-three percent of the preservice teachers who chose the graph 
paper problem mentioned the idea of one, which is required to successfully complete 
the graph paper solution, whereas 0% of those who chose the fraction pieces 
mentioned the idea of one, which is not required when using fraction pieces.

The average score of 1.57 (out of 6) suggests that preservice teachers’ analyses 
of the learning goal were limited, however. Although almost all of the preservice 
teachers referred to each of the subconcepts in Part 1 of the task (a score of 1 or 2 
in Table 3), the percentages of preservice teachers who referred to each of the 
subconcepts in Part 2 were as follows:

1. A quantity is identified as the quantity “one”: 40%.
2. We obtain units of size 1/n by partitioning the “one” into n equal parts: 37%.
3. The numerator is the number of units of size 1/n: 7%.
4. The addends must both be expressed in terms of the same-sized unit: 50%.
5. The addends must be joined: 17%.
6. The sum must be expressed in terms of a unit of size 1/n: 7%.

Table 4
Percent of Preservice Teachers Referring to the Six Subconcepts When Explaining, on Part 
2 of the Anticipating an Ideal Student Response Task, Why They Chose a Problem as Having 
the Most Potential to Reveal Student Understanding

 Among those who chose the problem as most revealing, 
percent who referred to the subconcept

Subconcept 
Fraction pieces 

(n = 4)
Graph paper 

(n = 7)
Algorithm 

(n = 6)
Pennies 
(n = 13)

A quantity is identified as 
the quantity “one.” 0 43 33 54

We obtain units of size 1/n 
by partitioning the “one” 
into n equal parts. 50 43 17 38

The numerator is the 
number of units of size 1/n. 25 14 0 0

The addends must both be 
expressed in terms of the 
same-sized unit. 100 14 67 46

The addends must be 
joined. 25 29 0 15

The sum must be expressed 
in terms of a unit of size 
1/n. 25 14 0 0
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The optimal response to Part 2 is for preservice teachers to carry out a complete 
analysis of the subconcepts of the learning goal, and then to relate that analysis to 
the capabilities of each of the problems for eliciting an understanding or lack of 
understanding of each subconcept. Instead, preservice teachers identified a subset 
of the subconcepts, and chose a representation that had the potential to reveal 
students’ understanding of those subconcepts.

Evaluating a Student’s Incorrect Response

Table 5 shows the percentages of preservice teachers who received scores of 0, 
1, and 2 for each of the four subconcepts on the Evaluating a Student’s Incorrect 
Response task. The average total score out of a possible 8 was 2.27 (SD = 0.58). 
No preservice teacher received a score of 2 on any subconcept. However, all preser-
vice teachers referred to at least one subconcept in their analysis: 7% referred to 
one subconcept, 60% referred to two subconcepts, and 33% referred to three 
subconcepts when describing what Nikki did not understand.

Based on the results for Part 1 of the Anticipating an Ideal Student Response 
task, we can predict that preservice teachers will fail to identify relevant subcon-
cepts to evaluate a student response when the context does not draw their attention 
to that subconcept. Performance on the Evaluating a Student’s Incorrect Response 
task is consistent with this prediction. Nikki’s response indicates that she did not 
understand the concept of one, for example. Because Mrs. Smith’s lesson involved 
fraction pieces, preservice teachers might not have thought about the concept of 
one when analyzing Nikki’s response. Although the results from the Anticipating 
an Ideal Student Response task indicate that 83% of the preservice teachers could 
refer to the idea of one in other contexts (Table 3), only 23% of the participants 
referred to this subconcept when they assessed Nikki’s response (Table 5).

Table 5 also shows that preservice teachers primarily referred to concepts 
involving the numerator and the denominator, ideas that Nikki most obviously 
lacked. This result again supports the conclusion that preservice teachers can 
identify a subconcept in a supportive context. It also suggests preservice teachers 

Table 5
Percent of Preservice Teachers Receiving Scores of 0, 1, or 2 on the Four Subconcepts of the 
Evaluating a Student’s Incorrect Response Task

Percent who received each score

Subconcepts Score 0 Score 1 Score 2

A quantity is identified as the quantity “one.” 77 23 0

We obtain units of size 1/n by partitioning the 
“one” into n equal parts. As n gets larger, 1/n gets 
smaller. 0 100 0

The numerator is the number of units of size 1/n. 10 90 0

A quantity can be represented by different,  
equivalent fractions. 87 13 0
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tended simply to comment on what was visible or explicit in Nikki’s response as 
opposed to constructing a list of component ideas required to achieve the learning 
goal, and then comparing these ideals or standards to Nikki’s response.

As another example of this tendency to react to the immediate context, only 23% 
referred to the concept of a one when analyzing Nikki’s response (Table 5); attention 
to this subconcept requires going beyond Nikki’s response to identify what is 
missing in the response. In contrast, 67% of the preservice teachers wrote that Nikki 
needed to understand that just because the numerator is larger, smaller, or equal 
does not mean the fraction is larger, smaller, or equal and/or that she needed to 
understand that she has to look at the whole fraction, not just the numerator. The 
latter ideas are directly connected to what Nikki did; she assumed the number with 
the larger numerator was larger.

Evaluating a Student’s Correct Work

The task asks participants to identify the ideas that Josie does understand about 
adding decimal numbers and then the ideas Josie does not understand about adding 
decimal numbers. We present first preservice teachers’ responses regarding what 
Josie does not understand. In this context, preservice teachers tended to make few 
references to the subconcepts of the learning goal (Table 6). The average total score 
was 0.77 (SD = 0.68) out of a possible 8. Thirty-seven percent of the preservice 
teachers referred to no subconcepts (out of four), 50% referred to one subconcept, 
and 13% referred to two subconcepts. This can be contrasted with the preservice 
teachers’ analyses on the Evaluating a Student’s Incorrect Response task for which 
7% referred to one subconcept (out of four), 60% referred to two subconcepts, and 
33% referred to three subconcepts. Apparently, preservice teachers were more 
likely to decompose a learning goal by identifying the individual subconcepts when 
analyzing an incorrect student response.

No preservice teacher received a score of 2 on any subconcept when they evalu-
ated Josie’s correct responses. That is, no preservice teacher explained a subconcept 
in a way that expressed the generalized form of the subconcept and went beyond 
the particular context of Josie’s work.

Table 7 lists the most common responses to the prompt, “What ideas do you think 
Josie does understand about the concepts underlying the addition of decimals? List 
as many ideas as you can (up to four) that you think Josie does understand.” As in 
the Evaluating a Student’s Incorrect Response task, preservice teachers appeared 
to limit their analyses by sticking closely to the exact nature of the student’s 
response. For example, 53% of the preservice teachers said Josie understood that 
the individual blocks represented 0.01 and the sticks represented 0.1. This claim 
was based on Josie’s statement: “I used a long stick to show .1 and a little block to 
show .01.” But as Table 6 shows, 90% of the preservice teachers received a score 
of 0 for subconcept 2 when analyzing what Josie should know and did not, which 
suggests that preservice teachers did not go beyond Josie’s statement to ask whether 
Josie understood the more general ideas associated with her statement—that the 
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Table 6
Percent of Preservice Teachers Receiving Scores of 0, 1, or 2 on the Four Subconcepts When 
Analyzing What Josie Did Not Understand About Addition of Decimals on the Evaluating a 
Student’s Correct Work Task

Percent who received each score

Subconcepts Score 0 Score 1 Score 2

1. A quantity is identified as the quantity “one.” 90 10 0

2.  The value of each digit in a decimal number is 
determined by its place in the numeral. Each 
place is associated with a unit of measure, and 
the size of the units increase or decrease by a 
factor of 10 as you move to the left or right, 
respectively. 90 10 0

3.  When adding decimals, same-sized units are 
joined, and the sum will be of that unit. In 
particular, it is most efficient if each unit of 
measure is added separately. 90 10 0

4.  When a quantity contains 10 or more of a 
particular unit of measure, those 10 can be 
exchanged for one unit of measure of the next 
larger size. 53 47 0

Table 7
Responses to What Josie Understands About Addition of Decimals on the Evaluating a 
Student’s Correct Work Task Given by at Least 20% of the Preservice Teachers

Josie understands . . .
Percent of preservice teachers 

who identified each idea

The individual blocks represent .01 and the sticks 
(or 10 blocks, or stick of 10) represent .1 53

10 little blocks make one stick, or ten .01s make 
one .1 (10 times relationship for tenths and 
hundredths places only) 50

How to represent decimals with money or lengths, 
or how to represent money or lengths with decimals 47

Place value 37

How to represent decimals with base 10 blocks 33

How to add by counting the quantities 20

value of each digit in a decimal number is determined by its place in the numeral, 
that each place is associated with a unit of measure, and/or that the size of the units 
increase or decrease by a factor of 10 as you move to the left or right, respectively.

In summary, preservice teachers were more likely to attempt to unpack a learning 
goal when a student gave an incorrect response. This supports the conclusion that 
preservice teachers can identify individual subconcepts when the context is 
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supportive: Incorrect student responses indicate something is wrong, and probably 
prompt an unpacking of the mathematical ideas to identify the source of the diffi-
culty. Correct student responses do not explicitly call for such an analysis. However, 
preservice teachers’ evaluations of both correct and incorrect student responses 
were also similar in one respect. In both cases, preservice teachers limited their
analysis of student responses by sticking closely to the exact nature of the response. 
They did not go beyond the response to identify all the subconcepts that might 
be missing, incorrect, or incomplete. The overlap in the mathematical ideas 
involved in the Anticipating an Ideal Student Response task and the Evaluating a 
Student’s Incorrect Response task suggests that this tendency did not reflect a 
content knowledge deficit or an inability to identify individual subconcepts. 
Instead, it suggests that preservice teachers did not intentionally unpack the learning 
goal in order to think explicitly about what a student should or could be doing to 
show understanding, and then compare that to what a student is actually doing.

Analyzing a Classroom Lesson

Part 1 of this task assessed preservice teachers’ ability to evaluate instruction and 
student responses by linking them to key subconcepts of the learning goal. The 
results suggest that when preservice teachers evaluated whether the lesson was 
helping students understand the learning goal, they did not link their analysis to the 
learning goal. As Table 8 shows, the percentages of preservice teachers who failed 
to refer to each of the six subconcepts ranged from 90% to 100%. When preservice 
teachers revised a segment of the lesson and justified their revision (Part 2/3), they 
were slightly more likely to refer to the learning goal (see the right column of  
Table 8). Whereas 90% of the participants referred to no subconcepts in Part 1 of 
the task, 50% of the preservice teachers referred to one, two, three, or four subcon-
cepts in Part 2/3 of the task. Thus, the activity of revising a lesson was more likely 
to lead to some unpacking of the learning goal.

The average total highest score (defined in the results for the Anticipating an 
Ideal Student Response task) on the Analyzing a Classroom Lesson task was 1.07 
(SD = 1.31) out of 12. The average total highest score for the Anticipating an Ideal 
Student Response task, which had the same learning goal as the Analyzing a 
Classroom Lesson task, was significantly higher (M = 8.87, SD = 1.93, t(58) = 
18.32, p < .0001). This discrepancy highlights the difference between identifying 
individual subconcepts when the context is supportive, and doing so when there 
are other features competing for attention.

Table 9 compares preservice teachers’ performance on the Anticipating an Ideal 
Student Response task with their performance on the Analyzing a Classroom 
Lesson task. The percentages of preservice teachers who received a highest score 
of 2 for a subconcept on the Anticipating an Ideal Student Response task but 
received a highest score of 0 for the same subconcept on the Analyzing a Classroom 
Lesson task was 40% or higher for five of the six subconcepts. The percentages of 
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Table 8
Percent of Preservice Teachers Receiving a Score of 0 for Each Subconcept of the Analyzing 
a Classroom Lesson Task

Subconcept
Percent who received a “0” 

in Part 1
Percent who received a “0” 

in Part 2/3

1.  A quantity is identified 
as the quantity “one.” 97 90

2.  We obtain units of size 
1/n by partitioning the 
“one” into n equal parts. 90 70

3.  The numerator is the 
number of units of size 
1/n. 100 90

4.  The addends must both 
be expressed in terms of 
the same-sized unit. 97 80

5.  The addends must be 
joined. 100 80

6.  The sum must be 
expressed in terms of a 
unit of size 1/n. 100 90

preservice teachers who received a highest score of 1 or 2 for a subconcept on 
the former task but received a highest score of 0 on the latter task ranged from 67% 
to 90% for all subconcepts. This result supports the conclusion that preservice 
teachers possessed the relevant knowledge but did not spontaneously unpack the 
learning goal in order to apply this knowledge to evaluate and revise instruction.

As noted earlier, in Analyzing a Classroom Lesson, the task of identifying and 
using the subconcepts of the learning goal to evaluate and improve instruction was 
deeply embedded in a classroom scenario. Unlike the other tasks, this task asked 
the preservice teachers to conjecture about cause–effect links between instructional 
features and student responses while relating the instruction and the student 
responses to an analysis of the learning goal. This required preservice teachers to 
keep their attention focused on the mathematical analysis of the situation in the 
face of other important and sometimes competing aspects of teaching. Consequently, 
we expected the Analyzing a Classroom Lesson task to be the most challenging for 
preservice teachers.

DISCUSSION

We began with the goal of uncovering the successes and challenges that preser-
vice teachers might experience as they acquire the knowledge and skills needed to 
unpack mathematical learning goals. Before summarizing what we found, we want 
to review why these competencies are important.
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Table 9
Comparison of Preservice Teachers’ Scores for Each Subconcept on Part 1 of the Anticipating 
an Ideal Student Response Task and the Analyzing a Classroom Lesson Task

Percent of preservice teachers in each category

Subconcept

Received at least one score 
of 2 on the Anticipating an 

Ideal Student Response task, 
and a score of 0 on all parts 

of the Analyzing a Classroom 
Lesson task

Received at least one score 
of 1 or 2 on the Anticipating 
an Ideal Student Response 
task, and a score of 0 on all 

parts of the Analyzing a 
Classroom Lesson task

1.  A quantity is identi-
fied as the quantity 
“one.” 77 77

2.  We obtain units of 
size 1/n by parti-
tioning the “one” into 
n equal parts. 40 67

3.  The numerator is the 
number of units of 
size 1/n. 40 90

4.  The addends must 
both be expressed in 
terms of the same-
sized unit. 7 70

5.  The addends must be 
joined. 47 80

6.  The sum must be 
expressed in terms of 
a unit of size 1/n. 43 90

Expertise in teaching is not acquired during preservice education but develops 
over time, as teachers learn from their own experience (Hiebert et al., 2007; Ma, 
1999; Sowder, 2007). Models of effective teacher learning involve teachers 
studying the effects of their own practice (Gallimore, Ermeling, Saunders, & 
Goldenberg, 2009; Huang & Boa, 2006; Lampert & Graziani, 2009; Stigler & 
Hiebert, 1999). Central to these models is an analysis of how the particulars of 
classroom instruction influence the thinking and learning of students. Useful 
analyses of teaching–learning links are dependent on clear descriptions of what is 
to be learned—clear descriptions of the mathematical learning goals for the lesson. 
How did the instructional activities help or hinder students’ achievement of the 
learning goals?

Unless teachers are clear about what they intend students to learn, it is difficult 
even to begin examining how instruction might have helped students learn it. More 
than that, it is difficult to plan instructional activities that would be helpful. So, 
both planning for instruction and evaluating its effects depend on clear descriptions 
of learning goals. Being clear about learning goals means unpacking them to iden-
tify their constituent parts. What mathematical concepts and skills feed into the 
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target learning goal(s)? What do students need to know and be able to do in order 
to achieve the goal(s)? Being able to answer these questions would seem to be a 
prerequisite for intentionally and systematically learning from one’s practice.

As we argued previously, the knowledge and skills needed to unpack learning 
goals are primarily mathematical (Ball et al., 2008). This makes them prime candi-
dates for learning goals in preservice education. Although there are good reasons 
to embed them in teaching contexts, for purposes of both learning and assessment 
(Blömeke, Felbrich, Müller, Kaiser, & Lehmann, 2008a), they are not dependent 
on extensive experience with school students and real-time teaching situations (Li 
& Kulm, 2008). In addition, the attention to school students’ learning goals is 
already a part of teacher preparation programs in many countries (Blömeke et al., 
2008b), so the development of competencies needed to carefully analyze learning 
goals fits well within many current programs.

To reiterate, unpacking mathematical learning goals defines a set of competen-
cies that (a) are essential for learning from one’s own teaching experience and 
improving one’s effectiveness over time, and (b) can potentially be acquired during 
preservice education. What do our findings show about the challenges facing 
preservice teachers in developing these competencies?

In simplest terms, the results indicate that preservice teachers, who already have 
had some experience with decomposing mathematical concepts into subconcepts, 
can identify mathematical subconcepts of learning goals in supportive contexts but 
do not spontaneously apply a strategy of unpacking learning goals and then using 
this information to plan for, or evaluate, teaching and learning. As described earlier, 
supportive contexts included contexts in which the subconcepts became visible 
simply by solving the mathematical problem (e.g., the graph paper problem in the 
Anticipating an Ideal Student Response task) or by examining the most apparent 
features of a student’s incorrect response (e.g., the role of numerator and denomi-
nator in the Evaluating a Student’s Incorrect Response task). In other words, 
supportive contexts were those that revealed the relevant subconcepts without 
intentionally having to search for them. Nonsupportive contexts were those in which 
the relevant subconcepts remained hidden (as often is the case when students give 
correct responses) and when other factors competed for attention (as was the case 
with pedagogical factors in the Analyzing a Classroom Lesson task).

Based on these findings, it appears that unpacking mathematical learning goals 
is not a tendency that comes “naturally” for preservice teachers (Murray, 1996). 
Although preservice teachers in this study displayed some of the specialized math-
ematical knowledge needed for teaching, they did not always use this knowledge 
to analyze the teaching and learning situations. Opportunities to acquire the relevant 
mathematical knowledge and the disposition to use it (Blömeke et al., 2008a) will 
need to be deliberately planned. This is likely to require multiple learning oppor-
tunities along with considerable practice, perhaps moving from supportive contexts 
to nonsupportive contexts. We expect that an important ingredient in these learning 
opportunities will be explicit discussions of the value of unpacking learning goals 
for studying, and improving, teaching.
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We are optimistic about the potential benefits for preservice teachers of acquiring 
the competencies needed to unpack mathematical learning goals. As Hill, Ball, and 
colleagues have demonstrated, it is in the details of mathematical knowledge for 
teaching (MKT) that connections are found to the work of teaching and the learning 
of students (Hill et al., 2005, 2008). We believe the results presented here describe, 
with more detail than previously offered, the nature of one component of 
MKT—specialized content knowledge (Ball et al., 2008). Because this knowledge 
is measurable, it is possible to evaluate and improve a program’s effectiveness in 
helping preservice teachers acquire it. As preservice teachers develop the tendency 
to unpack mathematical learning goals and use this information to plan and evaluate 
instruction, we believe they will be on the road to continued learning and increas-
ingly effective teaching.
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a Although one does not “solve” expressions, this wording was used, in this instance and in others 
described in this article, because it was familiar to students.

APPENDIX A

Anticipating an Ideal Student Response Task

Instructions

You have just completed several lessons in your fifth-grade math class with the 
following learning goal: 

“Students will understand how to add fractions and will understand the concepts 
underlying this operation.”

You want to give the students a problem that will assess whether the learning goal 
was achieved. You are considering the following problems. (Your students are 
familiar with all of these materials from previous instruction.)

Problem 1: Solve 1/4 + 3/8a using your fraction pieces.

Problem 2: Solve 1/4 + 3/8 by drawing a diagram on graph paper.

Problem 3: Solve 1/4 + 3/8 using the common denominator method.

Problem 4: Solve 1/4 + 3/8 using pennies with 24 pennies equal to 1.

PART 1

Sue is a member of your class. Imagine that Sue has mastered the learning goal. 
Explain how Sue would respond to each of the four problems: What would Sue 
have to do and say (exactly) to convince you that she understands the concepts 
underlying the addition of fractions?

Problem 1: Solve 1/4 + 3/8 using your fraction pieces.

I will be convinced that Sue understands the concepts underlying the addition of 
fractions if she says and does the following while solving this problem:

(Imagine that this is the only problem that Sue will solve for you; i.e., this is the 
only evidence that you will use to judge whether Sue understands the concepts 
underlying the addition of fractions. Use the exact wording that you want Sue to 
use while she solves the task.)

Problem 2: Solve 1/4 + 3/8 by drawing a diagram on graph paper.

I will be convinced that Sue understands the concepts underlying the addition of 
fractions if she says and does the following while solving this problem:
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(Imagine that this is the only problem that Sue will solve for you; i.e., this is the 
only evidence that you will use to judge whether Sue understands the concepts 
underlying the addition of fractions. Use the exact wording that you want Sue to 
use while she solves the task.)

Problem 3: Solve 1/4 + 3/8 using the common denominator method.

I will be convinced that Sue understands the concepts underlying the addition of 
fractions if she says and does the following while solving this problem:

(Imagine that this is the only problem that Sue will solve for you; i.e., this is the 
only evidence that you will use to judge whether Sue understands the concepts 
underlying the addition of fractions. Use the exact wording that you want Sue to 
use while she solves the task.)

Problem 4: Solve 1/4 + 3/8 using pennies with 24 pennies equal to 1.

I will be convinced that Sue understands the concepts underlying the addition of 
fractions if she says and does the following while solving this problem:

(Imagine that this is the only problem that Sue will solve for you; i.e., this is the 
only evidence that you will use to judge whether Sue understands the concepts 
underlying the addition of fractions. Use the exact wording that you want Sue to 
use while she solves the task.)

PART 2

You decide to give the students one problem that will assess whether the learning 
goal was achieved. Which problem will tell you the most about whether your 
students understand the concepts underlying the addition of fractions? Select one 
problem and then explain why you think this problem is the best one of the four.

Problem 1: Solve 1/4 + 3/8 using your fraction pieces.

Problem 2: Solve 1/4 + 3/8 by drawing a diagram on graph paper.

Problem 3: Solve 1/4 + 3/8 using the common denominator method.

Problem 4: Solve 1/4 + 3/8 using pennies with 24 pennies equal to 1.

____ Problem selected.

Why did you choose this problem? Why will it tell you the most about the students’ 
understanding of the concepts underlying the addition of fractions?
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APPENDIX B

Evaluating a Student’s Incorrect Response Task

(The transcript of Mrs. Smith’s lesson was adapted from Barnett, Goldenstein, 
& Jackson (1994), pp. 45-47.)

Instructions

The following transcript took place in a fourth grade classroom. First read the 
transcript. Then answer the question that appears after the transcript.

TRANSCRIPT OF MRS. SMITH’S LESSONS

Mrs. Smith, a fourth grade teacher, has planned three lessons on fractions. She 
has the following learning goal for her students:

“Students will understand how to compare fractions with different denominators 
and numerators, and the concepts underlying this type of comparison.”

Mrs. Smith begins by giving each student a fraction kit. The denominators of the 
fractions in the kits are 1, 2, 4, 8, and 16. For example, the fraction kits include the 
following representations:

1 whole 1/2 1/2

1/4 1/4

1/4 1/4

In the first lesson, Mrs. Smith focuses on identifying and orally naming various 
fractions. 

Mrs. Smith:  Place your “whole” [from the fraction kit] on your desktop. Now show me 1/4 
of a whole by placing 1/4 on top of it.

Students:  All the students place a one-fourth piece on the square representing 1 whole.

By the end of the lesson, all the students can correctly name and use the fraction 
kit to show unit fractions like 1/2 or 1/8 and nonunit fractions like 2/4 or 5/8. The 
students show these amounts with the fraction kit like this:
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1/2

1/4 1/41/8

In the second lesson, Mrs. Smith focuses on equivalent fractions.

Mrs. Smith:  How many eighths would be equal to 1/4? Figure the answer out, and write it 
down. I will come around and see what you have discovered.

Students:   All the students use their fraction-kit pieces to determine the answer. They first 
place a 1/4 piece on the whole, and then place two 1/8 pieces on top of the 1/4 
piece. Every student writes, “1/4 equals 2/8.”

Mrs. Smith:  Everyone discovered the correct answer! Try this one. How many sixteenths 
would equal 3/8?

Students:   Every student places three 1/8 pieces on the whole, and then places six 1/16 
pieces on top of the three 1/8 pieces. Every student writes, “3/8 = 6/16.”

By the end of the second lesson, all the students can solve simple equivalency 
problems without using the pieces.

In the third lesson, Mrs. Smith believes the students are ready to compare fractions 
with different numerators and denominators.

Mrs. Smith:  I would like you to think about this problem, and then write your solution in 
your journals. Mrs. Smith writes the problem on the board:

“Which would you rather have—6/10 of a dollar or 4/5 of a dollar? Explain your 
reasons for choosing your answer.”

Mrs. Smith then walks around the room and reads what the children have written 
in their journals. She reads the following entries:

Cindy:   If I had 6/10, I would have 2 more than 4/5. I would choose 6/10 so I could have 
more money.

Chris:   4/5 = 8/10. 8/10 is greater than 6/10. Of course, I would take 4/5 of a dollar. 
Wouldn’t you? He includes an illustration:

=

4/5 8/10 6/10
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Nikki:   I want 6/10. It is bigger. Nikki draws the following picture to justify her 
answer:

Instructions

Nikki gave an incorrect answer. What doesn’t Nikki understand about the 
concepts underlying the comparison of fractions? List as many ideas as you can 
(up to five) that you think Nikki should understand, and doesn’t.
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APPENDIX C

Evaluating a Student’s Correct Work Task

Instructions

Josie’s teacher, Mrs. Hagle, has just completed a lesson on adding decimals with 
her third-grade class. The goal of the lesson was: Help students understand how to 
add decimals and understand the concepts underlying this operation. 

During the lesson, the teacher had asked the students to complete the following 
problems. Josie’s work on each problem is shown. After the lesson is finished, Ms. 
Hagle looks over Josie’s work to assess her understanding of the learning goal.

Read over Josie’s work, shown on page 2, and then answer the following ques-
tions. Keep the learning goal in mind as you consider Josie’s responses.

1.  What ideas do you think Josie does understand about the concepts underlying 
the addition of decimals? List as many ideas as you can (up to four) that you 
think Josie does understand. Be as specific as you can. If you think she doesn’t 
understand anything about adding decimals, write None. How can you tell from 
Josie’s work that she understands these ideas?

2.  What ideas do you think Josie does not understand about the concepts underlying 
the addition of decimals? List as many ideas as you can (up to four) that you 
think Josie should understand, and doesn’t. Be as specific as you can. If you think 
she fully understands adding decimals, write None. How can you tell from Josie’s 
work that she does not understand these ideas?

Josie’s Work

Problem 1: Show .26 + .17 with Base-10 Blocks.

Josie wrote:  I used a long stick to show .1 and a little block to show .01. So then I 
put out 2 long sticks and 6 little blocks to do .26 and I also put out 1 
stick and 7 blocks to show .17, like this: [Shows two longs and six unit 
cubes on the left, and one long and seven unit cubes on the right.] Then 
I counted up all the little blocks and I saw that there were 43 little blocks 
in all so the answer is .43. So .26 + .17 = .43.

Problem 2: Heather had two pieces of string. One piece is .08 meters and the other 
piece is .06 meters. How much string does Heather have altogether?

Josie wrote:   I remembered that .01 meters is the same as a centimeter. So I got some yarn 
and a ruler to help me do this problem. I used the ruler to make one piece of 
yarn that was 8 centimeters and then I did another one that was 6 centimeters. 
Then I put them together, and I used the ruler to find out how much it was, 
like this:
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And then I saw it was 14 centimeters altogether so I knew the answer would be  
.14 meters.

Problem 3: Joey had $0.29 in his piggy bank. He earned $0.25 selling lemonade. 
How much money does he have now?

Josie wrote:   I knew he had 29¢ so I took out 29 pennies. Then he got 25¢ more so I put 
out 25 more pennies. When I counted them up it was 54 pennies so I wrote 
$.54 for the answer.
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APPENDIX D

Analyzing a Classroom Lesson Task

Instructions
Ms. Roland taught the following lesson for her fifth graders on adding fractions. 

She had already taught the meaning of the fraction symbol using a variety of 
physical materials. The particular goal for this lesson was:

Students will understand how to add fractions and will understand the concepts 
underlying this operation.

Read the transcript of the lesson and then answer the questions that follow. 
Always keep in mind the learning goal that Ms. Roland intended for her students.

TRANSCRIPT

Ms. Roland:   Good morning everyone. Today we will continue our work with fractions. 
We are starting a section on adding and subtracting fractions. We’ve talked 
before about what fractions mean but not how to add or subtract them.

Ms. Roland:   Segment 1 [It’s really important to understand how to add fractions, not just 
follow a rule. Most of the fractions we will work with today have the same 
denominators. That’s important. Because when we add fractions, we first 
check that the denominators are the same and then we add the numerators. 
Adding fractions follows an easy rule but you should understand why it 
works. Don’t just memorize a rule without understanding why. When we add 
fractions, we are adding parts of wholes. In previous lessons we worked on 
the meaning of fractions and you should be able to use that to help you 
understand how to add fractions. Do you think you can do that? 

Ms. Roland:   Good. OK. Let me show you how that works. Here’s the first problem. (Ms. 
Roland writes on the board: 1/5 + 3/5 = ___ .) You might be tempted to add 
1 plus 3 to get 4 and then add 5 plus 5 to get 10, but that wouldn’t give you 
the right answer. Remember, when you add fractions, you just add the top 
numbers. Those are the numerators. The bottom numbers, or denominators, 
stay the same. That’s pretty easy to remember, right? (Ms. Roland points to 
the 3 and 1 on the board and writes 4, and then points to the 5 and the 5, and 
writes 5 to make 4/5.)

Ms. Roland:   OK, let’s make sure everyone knows how to do these problems. Get into your 
groups and work out the answers to the problems on this worksheet. Get out 
your fraction pieces because they might help you see what’s going on. It’s 
important to understand the rules. (Ms. Roland distributes a worksheet with 
the following problems: 2/4 + 1/4; 1/6 + 3/6; 1/2 + 1/2; 1/3 + 1/3; 2/5 + 1/5. 
Students each have an envelope with same-sized colored laminated circles 
cut into pie pieces of halves, thirds, fourths, fifths, and sixths. Ms. Roland 
circulates around the room for about 15 minutes and encourages students to 
use the fraction pieces.)

Ms. Roland:   I think most of you are done now so let’s check a few of these. Who would 
like to tell us what they found? Tom?

Tom:   I got 3/4 for the first one. I used the fraction pieces.
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Ms. Roland:  Could you show everyone how you did that?
Tom:   I took the red pieces and I added 1 red piece and 2 red pieces and got 3 red 

pieces, so 3/4.
Ms. Roland:  Great, Tom. Anyone else? Marie?
Marie:   I got 4/6 for the second one. I did it the same as Tom. But I used the blue 

pieces because 6 of them make a whole. There were 4 pieces altogether so I 
wrote 4/6. (Ms. Roland circulates around the room for about 8 minutes and 
sees that the majority of students are getting the right answers to the prob-
lems.)] End of Segment 1

Ms. Roland:   Segment 2 [Most of you look like you understand how to add fractions when 
the denominators are the same. What happens if the denominators are 
different? (Ms. Roland writes the following problem on the board: 1/2 + 1/3 
= ___ .) What do you think the answer would be? Why don’t you work on 
this problem for a while and see what you come up with? I’ll give you a little 
time. Remember, you can draw pictures or use the fraction pieces or use 
whatever you know about fractions. (After about 5 minutes, Ms. Roland asks 
whether anyone had an answer.)

Sasha:  I drew a candy bar and divided it into 2 pieces and then I drew another candy 
bar and divided that one into 3 pieces. Then I shaded 1 piece in each bar. That 
gave me 2 pieces and there were 5 pieces altogether. So that made 2/5.

Jason:   I used the fraction pieces. I took 1 of the yellow pieces for the 1/2 and 1 of 
the green pieces for the 1/3. When I put them together, it looked almost like 
1. So, I think it’s 1.

Harry:  I drew a picture and it looked like it was almost 1 to me too.
Sally:  I agree with Sasha. I drew 2 circles for 1/2 and shaded 1 of them. Then I drew 

3 circles for 1/3 and shaded 1 of them. There are 2 circles shaded and 5 in 
all, so it has to be 2/5.

Jason:   But it can’t be 2/5. If you look at the fraction pieces, 1/2 is bigger than 2/5 
and you still have to add on 1/3. So, the answer has to be more than 2/5.

Ms. Roland:   OK. There are lots of interesting answers here. Did anyone get 5/6? (No one 
responds.) OK, I still like how many of you are drawing pictures and using 
the fraction pieces. Some of you are estimating how much it might be and 
that’s great. I know this problem is a little difficult for us now. Please think 
about it tonight and we’ll continue to work on it tomorrow.] End of Segment 2

Ms. Roland:   I’d just like to sum-up what we should have learned today and make sure you 
understand how to add fractions. When we add fraction problems like the 
ones we started with, we first check that the denominators are the same and 
then we add the numerators. That’s why one half plus one third wasn’t so 
easy—the denominators weren’t the same. Adding fractions follows an easy 
rule but you should understand why it works. Don’t just memorize a rule 
without understanding why.
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PART 1: Circle one number to rate the lesson as helping or not helping students 
understand the concepts underlying the addition of fractions.

 1 2 3 4 5
 Helping Not Helping

What evidence did you use to make this judgment? Please indicate what informa-
tion in the transcript you weighed most heavily to determine your rating.

PART 2: _______ If you could revise one of the two segments to help students 
understand more fully the concepts underlying the addition of fractions, which of 
the two segments would you choose? The segment should be the one that has 
potential for helping students, even if it does not help them in its current form. 
Choose the segment that, with some revision, could best help students understand 
the concepts underlying the addition of fractions.

1.  Describe how you would revise this segment. Describe exactly what you would 
change by writing what Ms. Roland should say and do.

2.  Explain why you think this change would help students understand more fully 
the concepts underlying the addition of fractions.

PART 3: Look back at the segment you did not choose to revise. Explain why you 
didn’t choose this segment. Be as specific as you can.
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